o mor System Orgonisstion o Archzer .,
. Compaae Of e
82 P 83
5.1.4 Accumulator mhic ramicemr halde -
s 2 ime amerzsions on dama This regster holds dar, Ao vemnld s 1m 1 17 e ree o 2 nepative pumber (2570 or greater thas sero), the sign flag
ar Reo A0 § ragezned 107 0mE PSS T 1 mee T . g WOCEE S0 L H B TERIE Wb I & T e -
5 PrOocessor Regisier Ao = oea—t o e eme are to De camied oul The resul: of ould ecwal 1o 0
a= g% 2=d lo@iCE 0DEEOes =0 il 1 e e ae
e e T T T T ensi =tz Accumulator
g e ., oo e ramemmaniz 23 well 23 lomicz]) an i 5.1.6 Stacks
s 2 ks wmad Sor coprime resuk 2nd for doimg OPSTAN0NS (ATDDEIL & VRS S SRS g) _
e e b S) During the execution of operacon. (here are number of Ces When [Df FICsSsr asecs I me 2
T Ea s of imsTCTONS olds the 2addrece temporary memory to store diferent dama values 50 (520 (02h 20 52 550 2350 WS TERTEC
%o Zanlc e shs s=dae af rha PYSCUTON O ST wais- = LT ElTrEss - - e e e
Program Counter : i Seals wiD D2 orcer S SR 5= . R = Erore mroeoccnr hac A Snie her of recicers But i a0 apobcanon needs more regsters than
ar which DOItS 10 (e MSmOIY Iocaton ZNEIV PTOCEss0r Nas a (NIt DumDE Ol ITEDRIS. Dt & = Sppuemsmt dommm momn s 7m0
o the nexr mswocoon © be execomed. Thus, X ads 25 3 poERE W02 . T available, the register value that s not needed tmmediately by Processor 2 e sioreC = 2
xbere the Do msTUCHOA S Sored Ty e A ben adhen A farrecen Reeds 10 D D)3
3 - 3 3 WS ocal v Lo V.S WIEH & PlUaoUe Lo S W ey e
- . wad v holding remporary daa generated during P Y-S, TS EE sy
Temporary Register : A repseer wsed 207 Doomp opsess y T remember the insouction from where it jumped so that Ir can retum 3
FrocmssmE TS Sascrly made oo processor. subroutng s comoletsd. Hence, the remurn aodress oo
i " \ far cemmz imsmocdon s called i L S SRR TR - o
Instruction Register : A regswer wsed for mormg imswucson 5 G2 Em.ﬂdnﬁo: generally stored in this temporary memory. This temporary memes
- P 'y SR SR S 2l Zrme the me—ory i€ 0 De DI20SS 1IN SOmME [egZister known as e e B i i . e v Frrrriene 2¢ FEERTOrETy menory Whes 2
wﬁnﬂﬁnnu S SEIIS RIS ITS LR SRy s s = ry The Stack 1s a block of memory loczoons reserved 10 NUNCTONS &5 TEmpOl=Ty o=t s
Bssucoos Aegies PrOCESSOT pUTS a picce of data, on the top of stack, the dama below it caonot de removed I e 22
o 3 Sandd tha das mmzernm 1Y ramd eaem - “; I L g . s
Data Register : Register used 1o nold (e Jana (operanc] 1eac fom memory. above it is removed. T

Zess pf mzmary word

his ope of memory location s refzrred 2 LAST-DNFIEST-OUT o LIFO
Address Register: Sepsermsed o hcld the 2 SEImITT oS The two main cperacons thar the Processor can periorm on the sk e v—...m: and POP. It
INPR: I=putreg will hoid receives dama £ 3] A

—— + 1 :] £l s erark Ar Aam P pha ron clomane o0 the
. REREE << sz man DpuT oI C3n ener store th 2 farecmrarrAath2 D O =3 > 0N T o /L LD e
SEEE WL St s LR Itm En e SR can either store the value of a regisier 1o 1€ 10p Of o2 STadK Or ¢an remoy T
& L s N N ca e rrachime s poem e s pom daes fee— erachore

: ! i ix toring e data o W acC S referred 10 as pus - Pe e Wy e S L a0
OUTR: I holds cara thar need wo be sent w0 output devices stack_ Storing the data to the stack is referred 10 as pushing 200 [EMOVInE O

=t 30eCS Cala (at nosC 10 D2 sent t0 oupeat CevVits. s

+ - o

T T ' . - . .o lorrod 2 nOrEne
2 e e e e em s m e 2l R m e am 2m St mrrm oy Al Rire sl o S orame ragTa T COTIT2 I g [EISITea a5 PoPnE
B Susth el S ptisleainieli-tose fest_Priituste 2@ eoR DR TR Ui SRS R R S e S e Hi 6

List of Registers 5.1.7 IO Ports
Register Symbel No. of bits Register Name Function of Register Inpur’Ourput ports, referred 2s I/O ports, are any conoection bat exist berws:

SIe EOy QOO Ch oL T cames e e

and its external devices. For example, 2 USB printer can be connected 10 (a2 comp
== g General Purpose Register = pr ing, execution through an /0 (USB) pert. Using this port the computer can isste commands 2nd send t
- 16 Accumulator Pro

. B o ’ 5.2 GENERAL REGISTER ORGANIZATION

= 12 Program Counter Eolds address of next Instruction

A bus crganizadon for seven CPU registers as shown in below figure. The outpu
1R 6 Temporary Register Holds Temporary Data is connecte

mndh g
alll register

d to two multiplexers(MUX) to form the two buses A & B. the selecton lines in £2ch

dnlever colect N S o aTaas Bl naricrailar Ban
mulrplexer select one register or the input data for the pa

16 Instruction Register H : i . .)
i nputs to a common ALU. The operation selected in the ALU determunes the anthmet 2

4T STEl U0 LT Ll C Padiiial U,

ected determunes the anthmetic or logic
18 Data Register Holds Memory Operand microinstructions 1o be performed. The result of th

. Address Register 'Hrolds address of Mamon ourtput data and also goes into the inputs of seven registers. the register that receives the
- & aava ——— PR IS tetey . 5 od
from the output bus is selected by the decoder. The decoder activates one of th

the register load inputs
o - e e and thus providing a transfer path between the output dara bus and the inputs of the selecte

OLTR s Output Register , destination register.

N | Let the operation be Rl « R2+R3
Table 5.1 To perform this operation, the conwrol must provide
$.1.5 Flags SELA >> Place the contents of R2 into bus A

i e Pt 8 e i . .. SELB >> Place the contents of R3 into bus B
_ +oefEare number ofindiczters known as flags that show the processor's status. Most of these)
1273 rooroanme rha saelt : 1

23ags represent the resul he last operadon

last operazons. For example, the addition of two numbers might AL >> Operation selector

Procduce a negauve sign, an overflow, a carry, or 2 value of zero, OPR >> Provide the arithmenc addition A+ B
{5ese liags are represented by a single bitsuch asif ¢

if the result of an addition is negative, the sign SELD >> Transfer the contents of the output bus into R!.

At the beginning of the clock cycle, the four conrrol selection vaniables generated R2 and R3

\ must be available in the control unit. Two source registers propagate through multiplexers o

Scanned by CamScanner

rrisesnes. Computer System O

Input

R

Rz

J
—

Ry

Ra

Ry

Rs

Ry

(7 lines)

Ix8
Decoder

SELD

SELA A

MUX |_

Abus

Bbus

Arithmetic logic
unit

Output

General Register Organization

Fig. 5.2

rganization and Architecture

w SELB

the ALU, to the outputs bus, and to the input of destination Register, during the clock cycle
interval. At the next clock transition, the information from output bus is transferred to the destination

register R1.
5.2.1 Control Word

The group of binary assigned to perform a specified operation is known as control

word.

There are 14 binary sclection inputs in the units, and their combined value specified a control
word. It contains of four field as shown in Fig. 5.3.

3

3 3

5

SELA

SELB SELD

OPR

Control Word
Fig 5.3

Three fields contain three bits each, one field has five bits. The three bits of SELA select a source
register for the A input of the ALU. The three bits of SELB select a fegister for the B input of the ALU.
The three bits of SELD select a destination register using the decoder and its seven load outputs.
The five bits of OPR select onr of the operations in the ALU.

The 14-bit control word when applied to the selection inputs specify a particular
Microoperations. The encoding of register selections is specified in following Table 5.2.

Central Processin

g Unit eatnsane saasan AR S bt AR S S axven veiinsnansiisnasysace RN E e . 85
Binary code SELA SELB SELD
000 input input none
001 R1 R1 R1
010 R2 R2 R2
011 R3 R3 R3
100 R4 R4 R4
101 RS R5 RS
110 R6 R6 R6
111 R7 R7 R7

When the 3-bit binary code for SELA or SELB is
external input data as shown in Figure, when the 3-bi

Encoding of Register Selection Fields

Table 5.2

000, the respective Multiplexer selects the
t binary code for SELD = 000, no destination

register is selected and the content of output bus is for external output.
The OPR field has five bits. The encoding for five bit OPR field is specified in the Table 5.3.

OPR Opcration Symbol
00000 Transfer A TSFA
00001 Increment A INCA
00010 Addition ADD
00101 Subtract SuB
00110 Decrement A DECA
01000 AND AandB AND
01010 OR A and B OR
01100 XOR A and B XOR
01110 Complement A COMA
10000 Shift right A SHRA
11000 Shift left A SHLA

Encoding of ALU Operation

Table 5.3

Ler the microoperation given by the statement is

Rl « R4

A RS

This statement specifies R4 for the A input of ALU, RS for the B input of ALU, and R1 as the
ster. The microoperation to be performed is AND operation between R4 and

destination Regi

RS. The control word for the above statement acco

rding to the Table 5.2 and Table 5.4 is as follow:

SELA SELB SELD QPR
R1 R4 RS AND
001 100 101 01000
Table 5.4

Thus, the control word is 001 100 101 01000.

Scanned by CamScanner

RBeess k.

86 Computer System Organization and Architecture Central Processing Unit sabetbreesuscsasnssssnsspsssriperaneriisissnssonransisrssmiostisisemiren BT
5.3 STACK ORGANIZATION content is 11111, the one-bit register FULL is set to 1, indicating that the stack is full and there is no

The Stack is also known as last-in first-out list. The stack can be consider as a storage method in location empty for any more item. Similarly when the content of S = 00000 anothes ane-bit regiger
which the item that stored last is the first item to be removed. The most common example of the stack ,_ EMPTY is set to 1 indicating that the stack is empty and there is no element in the stack that can be
phenomenon, is a pile of trays in a cafeteria, A tray

which is placed last on the top of pile is the first to _ deleted from the stack. The data register DR holds the items that is to written into the stack or read
be taken off.

out of the stack,
The stack in a digital computer is a part of memory unit. Also, with the stack an address Initially,

the SP is cleared to 0 so the stack pointer points to the word at mn_,&mmm 0. .ﬁmo.« the
register is associated that holds the address of the last element stored in the stack. This address one-bit register FULL s cleared to 0, indicating that the stack is not full and the ,..mmﬁmw._ mdzm.:J Is mmm
register is known as Stack Pointer (Sp). Thus, the stack pointer always points to the top most to 1. A new item is inserted into the stack by push operation. The PUSH operation will be the set o
element of the stack.

~ mozoizm::n-.ooﬁm_.mmo:m“
;__ SP < SP+1 Increment stack poiner
5.3.1 Push and Pop Operation

M([SP] « DR Add item on the top of stack
[nsertion and deletion of items are the operations related with th

. e stack. The process of inserting If (SP+0) then (FULL « 1) Check if stack is full
an item into the stack is known as push operation. The process of deleting an item from the stack is
known a pop operation. Th

EMPTY «- 0 Mark the stack not empty
; ese operation are done by incrementing or decrementing the Stack If the stack is not empty, an item can be deleted from the stack using the POP operation. The POP
I operation is implemented by the following set of microoperations.
5.3.2 Register Stack DR « M [SP] Read item from the top of stack

A stack can be organized by a finite number of re

gisters or a stack can be a finite number of SP« SP-1 Umﬁmﬂmnﬂ Mnmmr pointer
Memory Words. The stack pointer contains the address of the word that is currently on the top of If (SP=0) then (EMPTY «1) Check if stack is empty
the stack. A 32-Word Register Stack is shown in Fig. The Stack Pointer contains a binary value. FULL« 0 Mark the stack not full.
Currently, there are four items X1, X2, X

3 and X4 are placed in the stack with X4 at the top of stack so
ems are removed from the stack by uing' POP instruction,
When we remove the top item X4 from the stack, X3 is now on top of stack and the content of sPis L
decrement so that the SP holds the address 3. To insert a new item, first the SP will incremented and
then the item is inserted so that Sp points to the top of the stack. *

The top item is read from the stack into DR, then the SP is decremented by 1 so that it points to
the content of stack pointer is 4. The it

top of stack. The SP is checked whether it is zero on not. If zero, EMPTY sets to 1 indicating that the
stack is empty.

5.3.3 Memory Stack

Address ,, A stack can also be implemented using Random-Access Memory attached to the CPU. This
h can be implemented by assigning a portion of memory for stack operation using the processor
32 register as a Stack Pointer. The computer memory is partitioned into three parts as program,
FULL EMPTY i *
H D 0000
Program
H (instructions)
1000
Data
P El' (operands)
mD.l' X4 4 2000
>3 i Stack
X2 2
X1 1 4097
Register Stacl o
Fig. 5.4 _ .

In a 32-Word Register Stack, the address of each location will be of five bits since 25 = 32. ! :.ﬁwuq«um.w.nr
Thus; stack pointer will be of five bits and cannot exceed the value 11111, Thus, when the SP pointer

Scanned by CamScanner

BB iiireicnemciinasiiaiaeuisasensasinseasismsass i snsseansisiais Computer System Organization and Architecture

data, and stack as shown in Fig. PC points to the address of the next instruction stored in memory.
The stack pointer (SP) points to the top of the stack.

The initial value of SP is 5000 and the first item stored in stack is at address 4999, the second
item at address 4998 and so on. The last address that can be used for stack is 2000 i.e. the m:.u_ value
of stack is 2000. The stack grows in reverse order with decrcasing addresses. A new item into the
stack is inserted using PUSH operations as:

SP « SP-1
M [SP] « DR

The stack pointer is decremented first so that it points to the next address of the stack and then
the item from the data register is inserted into the top of the stack. An item can be deleted from the
stack using POP operation as

DR « M[SP] ~
SP «SP+1

The top item of the stack is read into the data register DR and then the stack pointer is
incremented by 1 so that it points to the top item of the stack.

Most of the computer does not provide any method to check the stack overflow or underflow to
check whether the stack is full or empty. One possible method is to used two processor registers
holding the addresses 2000 (upper limit) and 5000 (lower limit) respectively. Then, stack pointer is
compared every time the push operation takes place with the upper-limit register and its with the
lower-limit register, after the pop operation takes place.

5.3.4 Reverse Polish Notation

Let us consider an expression x + y. The plus operator is placed in between the two operands x
and y. Such a notation is known as infix notation. Ifthe operator is placed before the two operands
as +xy, the notation is said to be prefix notation, also known as polish notation. If the operator is
placed after the two operands as xy+, the notation is said to be postfix notation, also known as
Reverse Polish Netation. Thus, the three notation are

x +y Infix Notation
+ Xy Prefix or Polish Notation
xy + Postfix or Reverse Polish Notation.

For Stack manipulation the reverse polish notation is best suited. The reverse polish
notation for the expression A * B + C* Dis AB * CD * +.

5.3.5 Conversion to Reverse Polish Notation

The conversion of an expression from infix notation to the reverse polish notation must be
done according to the operational hierarchy that follows for infix notation. First perform all
arithmetic operations inside the inner parentheses, then inside outer parantheses, then do
multiplication and division operations and lastly the addition and subtraction operations.

Example: Convert the infix expression (Y +y) * [z * (w+ v) + s] into reverse polish notation.

Solution. The two sub-expression (x + y) and (w + v) will solved first. Thus the
Postfix expression of these subexpression will be xy+ and wv+ respectively.
Now, in the square bracket z will be multiplied by (w + v). Thus, the postfix of this multiplication
is zwv + *,

Central Processing Unit 89

This multiplication result is then added to s will result in zwv + *s +
Finally, xy+ and zwv + *s + will be multiplied together to get
Xy +zwv + *s + *
\The procedure is shown again as
(x+y)*[z*(w+v)+s)

]

K%.T-—Nv(.ﬁ.‘Av.Tu_

xy + * [zwv + * + 5]
= xy+ *zwv + 's +
=xy+zwv+ *s +°*
Example: Convert the infix notation A*B + A*{B*D+C*E) into RPN.
Solution.
A*B+A*(B*D + C*E)

= AB* + A* (BD* + CE*)

=AB*+A*BD*CE* +

=AB* + ABD *CE* + *

= AB* ABD *CE* + * +

5.3.6 Evaluation of Arithmetic Expression

Consider an expression A * B + C * Din infix notation. Its reverse polish notation is AB * CD *
+. This postfix expression will be evaluated as follows : scan the expression from left to A:n:_.
Whenever an operator is found, perform the operation with the two operands on the left side of
operator. Remove the operator and the two operands and replaced them by the result obtained by
performing that operation. Continue in the same manner and repeat the procedure for every operator
found until there are no more operators.

Thus, for the Reverse Polish Notation AB * CD* + first we find the operator * and the two
operands to the leftof * are A and B. Thus, we perform A * B and replace A, B and * by the product we
get

(A*B)CD* +

The next operator is * and the two operands to the left of * are C and D. Thus, we perform C* D

and replace C, D and * by the product, we get
(A*B)(C*D) +

The next operator is + and the two operands to the left + are the two products (A * B) and (C *

D), hence the result obtained is
A*B + C*D.

Any arithmetic expression can be evaluated using stack as follows :

(i) Convert the given infix expression into its equivalent reverse polish notation.

(ii) Scan the expression from left to right.

(iii) While scanning when operands are found, pushed them into the stack as they appears.

(iv) When operators are found, POp two top most operands from the stack, perform the operation
involving the operator and then pushed back the result into the stack.

(v) Continue, scanning the expression untl there are no mMOore operators.

(vi) Finally, the result of the expression will remain on the top of the stack.

Scanned by CamScanner

Computer System Organization and Architectyre
90

To illustrate this, consider the expression (A + B) * (C + Dl “.__b MWMMM uﬁ wwwﬂ% ”M%M M_ this
expression is AB + CD + *. The srack operation is shown in Fig. 4.6.The op of
the stack.

D

—=I" 1 — c c —{ C+D

(A+B)
A A | la+s A+B | —»| A+B A+B | —l(CctD)

Stack Operation to Evaluate (A+B) and (C+D)
Fig.5.6

5.4 INSTRUCTION FORMATS

The most common fields found in the instruction are ;

(D An operation code field that specifies the operation to be performed. It is known as
opcode field.

(i) An address field that designates the register address and/or a memory address.

(ii)A mode field that specifies the way the operands or the effective address is
determined.

For example,

ADD RI, RO. ADD is the opcode and R1, RO are the address field.

Operations specified by computer instructions are executed on some data stored in Memory or
some Registers. Operands residing on memory are specified by memory address and operands
residing on Processor Registers are specified by register address. A register address is a binary
number of K-bits that defines one of 2K registers in the CPU. Thus, if a CPU has processor registers RO
to R15, then address of each registers will be of four bits. For example, the binary information 0101,
is the address of register RS.

The instruction may be of several different lengths containing different number of addresses. The
number of address fields in the instruction format of a computer system depends on the internal
architecture/organization of registers. The different types of CPU organization are :

() Single Accumulator Organization

(i) General Register Organization

(iii) Stack Organization

5.4.1 Accumulator-type Organization

All operations are performed with an implied accumulator register. The instruction format uses

one address field, ie. only one operand address is specified in the instruction. The other
operand is in the accumulator. The result is placed in the accumulator.

For example,

ADD X, AC « AC + M[X]
The ADD X instruction means add the content at memory location X, symbolizes as M[X], with

Central Processing Unit

..... . . 91

the content of accumulator. Thus, the previous valu

- e of accumulator will be lost and the
accumulator contain the result of above instruction.

5.4.2 General-Register Organization

The instruction format in this type of computer needs two or three a
addresses in the instruction can be reduced to two from three if the destinati
of the source registers.

In two address instructions both operand address are speaified. The result is

s plac
specified addresses. In three-address instruction ow addresses are specifi
operands and one address of the result. Thus, general-register-type compurers employ
address fields in the instruction format. Each address field may speci§y 2 processor register or a
memory location.
Examples :

ADDRL,R2,R3 Rl « R2+R3
The above instruction contains three register addresses. The operation performed

perauon performed is the add
operation between the content of processor register R2 and R3 and resu’t is 1o be placed into the
destination register Rl.

ADD Rl R2 Rl «RlI+R2

The above instruction consists of only two register addresses. Rl and B2 are source registers

where Rl also serves the purpose of destination register. The instruction specifies the add operanon
between the contents of Rl and R2 and result to be stored into RI.

MOV Rl R2 Rl «R2

Mnemonic MOV is used for transfer instruction. The instruction contains onlv two register

address Rl and R2 where R2 is the source register and Rl is the destinazion

unaton. Thus, in transfer-type
instruction only two addresses are required. The instruction specifies move the content of R2 into

register R1.

Add Rl, X Rl « Rl + M[X]
This instruction has two address field, Rl the register address and X a2 memary address.

5.4.3 Stack Organization

Stack-oriented machines do-not contain any accumulator or general-purpose registers

Computers with stack organization have PUSH and POP instructions which requires an address
field. Thus the instruction

PUSHX TOP « M[X]

will push the word /data at address X to the top of the stack. The SP is automatically updated. The

operation instruction does not contain any address field because the o peration is performed on two
top most operands of the stack.
For example,

ADD

The instruction ADD consist of only operation code with no address field. This instruction pops
the top two operands from the stack, add the numbers and then PUSH the result into the stack

Scanned by CamScanner

L

92 Computer System Organization and Architecture

5.4.4 Address Instruction Set

To show how the number of address affects a computer program, we will evaluate the arithmetic

statement
X= (A+B)*(C+D)
using three, two, one or zero address instruction.

ADD, SUB, DIV and MUL arc used for arithmetic operations, MOV for Qn.ﬂmsm?vcua_.wno:.
LOAD and STORE for transfers to and from memory and AC register. We will assume that the
operands are in memory addresses A, B, C and D and the result must be stored in memory address X,
Rl, R2 are the register and T is the address of temporary memory location used to store intermediate
result.

5.4.4.1 Three-Address Instruction

ADDRI A, B Rl « MJ[A] + M[B]
ADDRZ,C,D R2 « M[C] + M[D]
MULX, R, R2 X « RI*R2

The symbol M[A] denotes the operand at memory address symbolized by A.

The advantage of the three-address format is that it results in short programs when evaluating
arithmetic expressions.

5.4.4.2 Two Address Instruction

MOV R1, A Rl « MI[A)]
ADDR1, B R1 « R1 + M[B]
MOV R2, C R2 « M[C]
ADD R2, D R2 « R2 +MID]
MUL R1, R2 Rl « RI*R*
MOV X, R1 M[X] « R1

5.4.4.3 One-Address Instruction
One address instruction use an accumulator (AC) register for all data manipulation.

LOAD A AC « MI[A]

ADD B AC « AC + M[B]
STORET M[T] « AC

LOAD C AC « MI[C]

ADD D AC « AC + M[D]
MULT AC « AC™* ACT.
STORE X M[X] ¢« AC

All operations are done between the AC register and a memory operand. T is the address of a
temporary memory location required for storing intermediate result.
5.4.4.4 Zero-Address Instruction

To evaluate arithmetic expression for zero-address machine, the expression must be in
reverse-polish notation. Also, the instructions like ADD, MUL does not requires an operand field. It
simply pop-up the two top most operands from the stack, perform the operation and places the result
on the top of the stack. However, PUSH and POP instructions requires an address field to specify the

; e TIE -
U A, e ae ey 3

Central Processing Unit 93

operand that communicates with the stack, TOS stands

\ : for top of stack. The reverse polish
notation of expression.

X = (A+B)*(C+D)isevaluated as
= (AB+) * (CD+)
= AB+CD+*

PUSHA TOS « A

PUSHB TOS «— B

ADD TOS «— A+B

PUSH C TOS « C

PUSH D TOS «— D

ADD TOS +«— C+D

MUL TOS « (A+B)* (C+D)
POP X M[X] +« TOS

5.5 ADDRESSING MODES

Each instruction needs data on which it has to perform the specified operation. The operand
(data) may be in accumulator, general purpose register or at some specified memory location.
Thus, there are various ways of specifying the address of the data, known as addressing modes.

5.5.1 Instruction cycle

1. Fetch the instruction from the memory.
2. Decode the instruction
3. Execute the instruction.

PCie. program counter keeps track of the instructions in the program stored in the memory.
PC holds the address of the instruction to be executed next and is incremented each time an
instruction is fetched frorn memory. The decoding determines the operation to be performed, the
addressing mode of the instruction and the location of the operands. The computer then executes the
instruction and retumns to the step 1 to fetch the next instruction in sequence.

[_opcobe [MoDE | ADDRESS |

Instruction Format
Fig.5.7
There are two addressing modes that need no address field at all. They are implied and
immediate. Zero-Address instructions in a stack-organized computer are implied-mode
instructions since the operands are implied to be on top of the stack.

5.5.2 Implied Addressing Mode

Also known as implicit or inherent addressing mode. The operands are specified implicitly in
the definition of the instruction itsclf.

For example,

“Compiement Accumulator” is an implied mode instruction because the operand in the
accumulator register is implicd in the definition of the instruction.

CMA : Take complement of the content of AC,

RLC : Rotate the contents of the Accumulator.

All reference instruction that use an accumulator are implied-mode instructions.

Scanned by CamScanner

O e s Computer System Organization and >anr:m25m

5.5.3 Immediate Addressing Mode

In this mode the operands is specified in the instruction :m..w_n i.e.in -n:_.nnu_w»mnnnnm.mmm:w
mode, instruction has an operand field rather than address field. The onmJ: leld contains th,
actual operand. This mode are useful for initializing registers to a constant value.

Instruction
_ _ Operand

Immediate Addressing Mode
Fig. 5.8

For Exmaple, MVI 06 Move 06 to the accumulator
ADD 05 Add 05 to the content of the AC.
5.5.4 Register Addressing Mode

In Register addressing mode the operands are in registers that resides within the CPU, the
contents of the register is the operand itself.

Instrcution

Operand

Registers

Register Addressing Mode
Fig.5.9
Example,
MOV R1, R2,R1 «R2
ADD R1 AC « AC +R1
LD R1 AC «R1 LOAD

Transfer the content of register R2 to that of register R1
Add the content of register R1 to that of accumulator
the content of register R1 to the accumulator

5.5.5 Register Indirect Mode Addressing

The instruction specifies a register in the CPU whose contents give the address of the memory

Instrcution
Il_rY Operand
Registers
Memary
Register Indirect Mode Addressing
Fig.5.10

Central Processing Unit 95

location where the operand is stored, i.e. the selected register contains the address of the operand
rather than the operand itself.

Example LD (R1) AC « M([R1]

5.5.6 Direct Addressing Mode

Also known as absolute addressing Mode. In this mode the address of data (i.e. operand) is
specified in the instruction itself, i.e. the operand resides in the memory and its address are given
directly by the address field of the instruction.

AC «— M[ADR]

Example LD ADR
Instrcution

Direct Addressing Mode=
Fig.5.11

5.5.7 Indirect Addressing Mode

In this mode address field of the instruction gives the address where the operand is stored in the

memory.
LD ADR AC « M[M] [ADR]

Instrcution

Indirect Addressing Mode
Flg.5.42

5.5.8 Displacement Addressing Mode

Displacement addressing mode are of three ypes::
(i) Relative Addressing Mode.
(ii) Indexed Addressing Mode

(iii) Base Register Addressing Mode

These addressing modes require that the address field of the instruction be added “,o the con-
tent of a specific register in the CPU to get the effective address. The effective address is calculated as

Scanned by CamScanner

Computer System Organization and Architecture

s — address part of instruction -+ content of the CPU register

ctive addres .
cffe on of effective address may be program counter, an index

The CPU register used in the computati
register or a base register.

5.5.9 Relative Addressing Mode
The content of the program counter is added o the address part

obtain the effective address. . .
For example, let the program counter contains 825 and the address part of the instruction

contains the number 24. The instruction at memory location 825 is read from memory gcnﬂm_ fetch
phase and the program counter is incremented by one to 826. Hence, the effective address
computation for the relative address mode is 826 + 24 = 850.

of the instruction in order to

5.5.10 Index Address Mode
The content of the index register is added to the address part of the instruction in order to

obtain the effective address.

5.5.11 Base Register Addressing Mode
The content of the base register is added to the address part of the instruction in order to obtain
the effective address.

5.6 DATA TRANSFER AND MANIPULATION

Computer instructions are broadly classified into three different categories
(i) Data transfer instructions

(i1) Data manipulation instructions

(iii) Program control instructions

5.6.1 Data Transfer Instructions

Data transfer instructions are those instructions that transfers the data from one location to
another without changing the data content. These transfers can be between the two processor
registers or between the memory location and processor registers or between the processor registers
and input or output. Different data transfer instructions (with their mnemonic) used in many
computers are listed in Table 5.5.

Name Mnemonic

Load LD
Store ST
Move MOV
Exchange XCH
Input IN
Output ouT
Push PUSH
Pop pPop

Data Transfer Instructions

Table 5.5

Centrai Processing Unitccccoovrnnennnn e sresereanat e e sass senmas i ane eI R A IR ov T eee s e sn 97 -

Different computer can use different mnemonic for the same instruction. The load instruction
is used to transfer a data content from memory location to processor register, called an accumulator.
The store instruction is used to transfer a data content from processor register to some memory
location. Move instruction is used to transfer the data content from one processor register to another.
Whenever it is required to swap information between two registers or a register and a memory
location, the exchange instruction is used. To transfer data content from processor registers and
input or output terminals, respectively the input and output instructions are used. Push and pop
instructions are used to transfer data content between processor registers and a memory
stack-Different addressing mode for the load instruction is shown in Table 5.6, where ADR mm the
memory address, NBR is the number or operand, X is index register, Rl is the processor register

and AC is accumulator.
Addressing Mode for Load Instruction

Addressing Mode Instruction Register Transfer
Direct LD ADR AC « M[ADR]
Indirect LD @ ADR AC « M [M[ADR]]
Register LD R1 AC «R1
Register Indirect LD (R1) AC « M[R1]
Relative LDS ADR AC « M[PC =ADR]
Index LD ADR (X) AC « M [ADR +XR]
Immediate LD # NBR AC «NBR

Table 5.6

The character @ before memory address indicates indirect address. In case of register
indirect mode, the register that holds the memory address is enclosed in parentheses.’ The
character $ before memory address makes the address relative to the program counter PC. The
character # before the operand indicates immediate mode instruction.

5.6.2 Data Manipulation Instructions

Data manipulation instructions are those instructions that perform arithmeuc, shift or
logic operations to manipulate the data. Thus, data manipulation instructions arc broadly
divided into three basic categories :

® Arithmetic instructions

® Shift instructions

® Logic instructions

5.6.2.1 Arithmetic Instruction

Addition, subtraction, multiplication and division are the four basic arithmetic operations.
Most of the computers provide the instructions to perform these operations. Increment (or
decrement) instructions adds 1 (or subtracts 1) to the value stored in a register or some memory
word. A list of standard arithmetic instructions is shown in Table 5.7.)

Scanned by CamScanner

..... Computer System Organization and Archite ,
C ure

98 e
Arithmetic Instructions
Name of instruction Mnemonic
Add ADD
Substract SUB
Multiply MUL
Divide DIV
Increment INC
Decrement DEC
Negate (2's complement) NEC
ADD with carry ADDC
Substract with Borrow SUB B
Table 5.7

5.6.2.2 Shift Instruction

m.?m operations can be a circular or arithmetic shift or can be simple logical shift in which
&m bits o.m m.io_d moved to the left or to the right. For both the cases, logical shift-left or logical shify
:.m:r 0 is _amﬂ& at the end bit position. Rotate instructions produces circular shift _m
circulates the bits around the two end without loss of information. The instructions like BH.ma
through carry treats a carry bit as an extention of the wau.mam_. whose word is being rotated. Thus
rotate-left through carry instructions transfers the carry bit into the rightmost bit no&:m: E.a.
:.N:wmna. the E::oﬂ bit into the carry and at the same time shifts the entire register to left. The
?m:n:Sn.:n shift-left instruction inserts 0 at the rightmost bit position. The arithmetic shift .1 ht
Instructions leaves the sign bit unchanged and shifts the bit (including the sign bit) to the right mm:m
the rightmost bit is lost. Basic shift instructions are listed in Table 5.8. s

Name of Instruction Mnemonic
Logical shift left SHL
Logical shift 1ight SHR
Rotate left ROL
-Rotate right ROR
Arithmetic shift left SHLA
Arithmetic shift right SHR A
Rotale left through Carry ROLC

Rotate right through Carry RORC
Table 5.8

5.6.2.3 Logical Instruction

wmmmn«ozﬁ logical instructions are listed in the Table 5.9. AND, OR and XOR instructions
provides the corresponding logical operations. The complement instruction produces the I's
complement of the operand. Clear instructions replaces all bits of the operand by O's. Clear carry, set
corry and complement carry are instructions that are performed on the individual bits, :m:o
.Em::.n:.o: is clear carry the carry bit is cleared to 0. If it is set carry the carry bit sets to 1. Similarly,
Mm 3&52&:25: is complement carry the carry bit complements and the bit changes from 0 to 1 OM
rom 1 *o 0.

Central Processing Unit ...,

Logical instructions

Name of Instruction Mnemonic
AND AND
OR OR
Exclusive-OR XOR
Complement COM
Clear CLR
Clear Carry CLRC
Set Carry SETC
Complement carry coMcC
Enable Interrupt El
Disable Interrupt DI

Table 5.9

5.7 PROGRAM CONTROL INSTRUCTIONS

Program Control Instructions are those instructions that can alter the flow of control.
Generally, the programs executed in a straight line, with one instruction sequentially following the
another. Most programs consist of a number of loops in which a series of instructions repeats until a
specific requirement achieved. Also, a program can consist of various test to determine which of
several actions to take. Thus, a transfer of control to the address of an instruction that does not
immediately follow the one currently executing is required. This transfer of control may be forward,
to execute a new series of instructions or backward, to re-execute the same instructions. The address
of the next instruction to be executed is contained in the program counter and is automatically
incremented each time after the instruction is ferched from the memory, so that it contains the
address of the next instruction in sequence. Hence, it is the program control type of instruction that
can change address of program counter and causes the flow of control of program to be altered.

Different program control instructions are listed in the Table 5.10. Branch and Jump
instructions can be conditional or unconditional. The conditional branch instructions are those

instructions that contains some condition and the program counter is lcaded with the branch

address when the specified condition on the instruction is fulfilled, and the next instruction is fetch
from that address. If the condition is false, the program counter is not changed and the next

instructions is fetched from the next location in sequence. Both branch and Jump instrucnons can

used interchangeably and is usually a one-address instruction, as BR ADR where ADR is a symbolic
name given to an address. When the braich instruction is executed, it causes the value ADR 1o

transfer into the program counter and the next instructions will fetched from this location ADR.

Program Control Instructions

Name of Instruction Mnemonic

Branch BR

Jump JMP

Skip SKP

Call CALL
Return RET
Compare CMP

Test TST

Table 5.10

Scanned by CamScanner

